تأثیر پیش پردازش متغیرهای ورودی به شبکه عصبی برای پیش بینی جریان ماهانه با آنالیز مؤلفه های اصلی و موجک

Authors

روح اله نوری

اشکان فرخ نیا

سعید مرید

حسین ریاحی مدوار

abstract

برآورد جریان حوضه آبریز با توجه به کاربرد گسترده آن در علوم مرتبط با صنعت آب، از دیرباز مورد توجه پژوهشگران بوده است. ارائه الگوهای نو و به کارگیری تکنیک های پیشرفته می تواند موجب ایجاد تحول در برآورد این سیستم دینامیک و غیرخطی شود. در این تحقیق برای پیش بینی جریان ماهانه، از شبکه عصبی پیشخور استفاده گردیده است. به علت تعداد زیاد متغیرهای مورد استفاده در این تحقیق برای پیش بینی جریان، شناخت متغیرهای مؤثر بر شبکه می تواند باعث بهبود نتایج گردد. به این منظور، با استفاده از تکنیک آماری آنالیز مؤلفه های اصلی، که باعث کاهش تعداد متغیرها و ورود متغیرهای مؤثر به شبکه می شود، اقدام به مدل سازی جریان شد (pca-ann). در ابتدا از pca برای کاهش متغیرهای ورودی استفاده شد و پس از تبدیل 18 متغیر به 18 مؤلفه جدید، از 8 مؤلفه اول در بهترین مدل به عنوان ورودی به شبکه استفاده گردید. همچنین با استفاده از موجک، پیش پردازش روی متغیرهای اصلی صورت گرفت و مدلی نیز برای پیش بینی جریان با این روش ارائه شد (wnn). در نهایت، نتایج به دست آمده از این سه مدل، حاکی از نقش مؤثر پیش پردازش روی متغیرها توسط pca و موجک بود. همچنین در مقایسه با مدل های ann و wnn در مدل pca-ann ، ساختار ساده تر، سرعت آموزش شبکه بیشتر و نتایج رضایت بخش تر بود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تأثیر پیش‌پردازش متغیرهای ورودی به شبکه عصبی برای پیش‌بینی جریان ماهانه با آنالیز مؤلفه‌های اصلی و موجک

برآورد جریان حوضه آبریز با توجه به کاربرد گسترده آن در علوم مرتبط با صنعت آب، از دیرباز مورد توجه پژوهشگران بوده است. ارائه الگوهای نو و به‌کارگیری تکنیک‌های پیشرفته می‌تواند موجب ایجاد تحول در برآورد این سیستم دینامیک و غیرخطی شود. در این تحقیق برای پیش‌بینی جریان ماهانه، از شبکه عصبی پیشخور استفاده گردیده است. به علت تعداد زیاد متغیرهای مورد استفاده در این تحقیق برای پیش‌بینی جریان، شناخت متغ...

full text

بررسی ترکیب تبدیل های موجک و شبکه عصبی در پیش بینی جریان های سطحی تنگه هرمز

جریان‌های سطحی اقیانوسی، نقش مهمی در انتقال گرما و تغییرات آب و هوایی دارد. ازاین‌رو، پیش‌بینی جریان‌های دریایی از اهمیت بسزایی در اقیانوس‌شناسی برخوردار است. در این پژوهش با به‌کارگیری شبکه‌‌عصبی و تکنیک تبدیل موجک به پیش‌بینی جریان‌های سطحی تنگه‌هرمز پرداخته شده است. بدین منظور داده‌های ثبت‌شده این حوزه از نوامبر سال 1992 تا دسامبر سال 2014 با گام زمانی 5 روزه از سایت ناسا تهیه و با به‌کا...

full text

مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل‌های استاتیک و دینامیک در شبکه‌های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می‌باشد. در این تحقیق آبدهی های ماهانه بین ...

full text

پیش بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی

هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (pca) بر عملکرد مدل ماشین بردار پشتیبان (svm) برای پیش بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل svm، دبی جریان ماهانه پیش بینی شد. سپس با استفاده از pca تعداد متغیرهای ورودی به مدل svm از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...

full text

ترکیب شبکه های عصبی برای پیش بینی قیمت سهام

در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...

full text

My Resources

Save resource for easier access later


Journal title:
فصلنامه علمی- پژوهشی آب و فاضلاب

Publisher: مهندسین مشاور طرح و تحقیقات آب و فاضلاب

ISSN 1024-5936

volume 20

issue 1 2009

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023